If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+4t=50
We move all terms to the left:
4.9t^2+4t-(50)=0
a = 4.9; b = 4; c = -50;
Δ = b2-4ac
Δ = 42-4·4.9·(-50)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{249}}{2*4.9}=\frac{-4-2\sqrt{249}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{249}}{2*4.9}=\frac{-4+2\sqrt{249}}{9.8} $
| 2000=5x+3x | | -3k+4=-2-6 | | 24.5x-4.9x^2+29.4=0 | | 24.5x+-4.9x2=29.4 | | 2x=x/18 | | (11-5)•x+13-8=29 | | (x-5)*(x-5)=9 | | 4(3x+5)=7x+75 | | 5t-17=t+27 | | 9y+6=4y+21 | | 2x×3=x+5 | | 3=w/2+3 | | 96=-3x+6 | | 7(5x-2)=10 | | 4(2r+2)=40 | | 7-h=46 | | x+3(5x)=2000 | | 6+2a=20 | | 4t+11=31 | | 130=20x+50 | | 4x+3+2x–8=25 | | 2.51t=6.17t-4.62 | | 4b+4=10 | | 79=8p+7 | | 45-3/5p=102 | | 12+b=-3b+32 | | 4w+7=19 | | 7|12x+3|-1=62 | | 2(-x-2)^2=10 | | -9+2k=k-2k | | (x+3)^2-9=-5 | | -5(3x+4)=2(-6x+4)+11x |